Reprinted from the Pi Mu Epsilon Journal 7.8(1983)548-549.

514. [Spring 1982] Proposed by Raymond E. Spaulding, Radford University, Radford, Virginia.

Let $A_{1} A_{2} A_{3} \ldots A_{n}$ be a regular polygon where $A_{n+j}=A_{j}$ and $A_{i} A_{i+1}=1$. Let B_{i} be a point on the segment $A_{i} A_{i+1}$ where $A_{i} B_{i}=x$. Let C_{i} be the point where $A_{i} B_{i+1}$ intersects $A_{i+1} B_{i+2}$. Find the area of a regular polygon $C_{1} C_{2} C_{3} \ldots C_{n}$ in terms of n and x.
Solution by Stanley Rabinowitz, Digital Equipment Corp., Merrimack, New Hampshire.

$$
\begin{aligned}
& \text { Let } A_{2} B_{3}=k, A_{3} C_{2}=A_{2} C_{1}=y, \text { and } C_{2} B_{3}=z \text {. By symmetry, } \\
& \not B_{3} 3_{2} A_{3}=\not{ }_{2} C_{2} A_{3} B_{3} \text {, so triangles } B_{3} A_{3} A_{2} \text { and } B_{3} C_{2} A_{3} \text { are similar (by angle- } \\
& \text { angle). Thus } \\
& \frac{x}{1}=\frac{z}{y} \text { and } \frac{k}{1}=\frac{x}{y}, \quad \text { so } y=\frac{x}{k} \text { and } z=\frac{x^{2}}{k}
\end{aligned}
$$

and

$$
C_{1} C_{2}=A_{2} B_{3}-A_{2} C_{1}-C_{2} B_{3}=k-\frac{x}{k}-\frac{x^{2}}{k}=\frac{k^{2}-x-x^{2}}{k} .
$$

Applying the law of cosines to triangle $B z^{A} 2^{A} 3_{3}$, we find that

$$
k^{2}=1+x^{2}+2 x \cos \theta
$$

where $\theta=2 \pi / n$ is the exterior angle of the regular n-gon. The area of a regular n-gon of side s is $n s^{2} /(4 \tan (\theta / 2))$, so the area of the regular n-gon with side $C_{1} C_{2}$ is, where $\theta=2 \pi / n$,

$$
\frac{n\left(k^{2}-x-x^{2}\right)^{2}}{4 k^{2} \tan (\theta / 2)}=\frac{n(1+2 x \cos \theta-x)^{2}}{4\left(1+2 x \cos \theta+x^{2}\right) \tan (\theta / 2)} .
$$

